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1. Introduction

The study of different configurations of branes provides us with information about their

dynamics and properties of the gauge theories that reside in them. For example, by consid-

ering space filling intersecting branes as in [1], the anomaly inflow mechanism determines

the coupling of D branes to Ramond-Ramond forms. As is noted in [1] the two distinct
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supersymmetric configurations of space filling intersecting branes up to T-duality are inter-

secting D5-branes over 1 + 1 dimensions (I1 brane) and intersecting D7-branes over 5 + 1

dimensions(I5 brane). The characteristic feature of such configuration is that they describe

chiral theories in the intersection domain. There is a curious symmetry enhancement in the

I1 observed in [2], where it was found that Poincare symmetry is enhanced from SO(1, 1)

to SO(1, 2), and the number of supersymmetries was also doubled. This phenomenon was

confirmed both from the weakly coupled gauge theory picture and the supergravity limit.

It is thus interesting to see if this also occurs in the I5-brane. However in this case the

microscopic description in terms of six-dimensional gauge theory is problematic. Further-

more the validity of the use of DBI action in analysing the D7-branes dynamics is not well

understood, since an angle deficit is created by every 7-brane independent of the value of

the string coupling. On the other hand it should be possible to study the supergravity

limit of this configuration. This is one of the main purposes of this paper.

Our solutions generally describe a stack of N1 coincident D7-branes intersecting an-

other stack of N2 coincident D7-branes in an I5 configuration, where N1, N2 ≤ 24. Most

of our discussion will be restricted to the case with equal numbers of branes, N1 = N2.

The solution is based on a generalisation of the stringy cosmic string [3]. Interestingly,

the solutions also have enhanced Poincare symmetry and supersymmetry, as in the case of

I1 branes. However, in this case the enhancement is a property of the full solution rather

than the near-horizon limit. The solutions also generalise to situations in which branes are

separated in one of the stacks and also to branes intersecting at angles.

The second part of this paper explores possible connections between intersecting D7-

branes and the conifold singularity of elliptically fibred Calabi-Yau manifolds. The fact that

a particular system of branes should be dual to special spacetime geometry has been dis-

cussed at length in the literature (e.g. [4]). The explicit example of intersecting NS5-branes

which T-dualise to the conifold provides an explanation for gauge symmetry enhancement

as the complex moduli of the geometry is tuned. The similarities between these NS5 config-

urations and intersecting D7-branes suggests an extension of these ideas might be possible.

In particular, F-theory describes elliptically fibred Calabi-Yau manifolds in terms of two

intersecting stack of D7-branes with 24 branes in each stack. We will show explicitly that

the conifold arises in the limit in which two D7-branes, one from each stack, intersect each

other but are far from the others. However, we have not been able to obtain the conifold

metric from our solution, mainly because of the fact that F-theory distinguishes the extra

fibred torus, which is unphysical, from the rest of the spacetime, thus breaking the SO(4)

symmetry required of a conifold.

The organisation of the paper is as follows: The solution for parallel D7-branes and its

origin from the stringy cosmic string solution will provide the framework for the intersecting

brane solution. The stringy cosmic string [3] and its connection to D7-branes and F-theory,

which foreshadows the analysis of the conifold, are reviewed in the appendix. In section 2

and 3 we shall present the candidate solutions of the intersecting D7-branes and some of

their properties. In section 4 we will discuss the possibility of obtaining a conifold at the

intersection. Further comments will be made in section 5.
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2. Intersecting D7-brane solutions of the Einstein equations

The bosonic action and the equations of motion are as discussed in appendix (A.1) To

obtain a solution that represents a system of two sets of D7-branes intersecting in six

spacetime dimensions with four relatively transverse directions, we assume that the metric

takes the following form:

ds2 = ηαβdxαdxβ + Kab̄dzadz̄b (2.1)

where α, β ∈ {0, 1, 2, 3, 4, 5} and a, b ∈ {1, 2} such that za’s are two complex dimensions.

In other words, the four relatively transverse directions form a complex two dimensional

Kahler manifold whose Kahler metric is given by Kab̄ = ∂a∂̄bK, where K is the Kahler

Potential.

The τ equation (A.3) can be solved if τ is a holomorphic function of za. Then the

Einstein equation (A.4) is simplified to

Rab̄ = −∂a∂b̄ ln detKab̄ =
1

4τ2
2

(∂aτ∂b̄τ̄) = −∂a∂b̄ ln τ2 (2.2)

where we have made use of the property of a Kahler manifold in the first equality.

The equation is solved by

τ = τ(za), (2.3)

detKab̄ = |F (za)|2τ2 (2.4)

where F (za) is any arbitrary holomorphic function.

SUSY transformations of the dilatino λ and gravitinos ψµ are given by:

δλ = − 1

2τ2
(∂aτea

AΓA + ∂āτea
AΓĀ)ε∗ (2.5)

δψa = Daε =

(

∂a +
1

4
wAB

a Γ[AB] +
i

4

∂aτ1

τ2

)

ε (2.6)

where wAB
a are the spin connections (whose non-trivial components are along the relatively

transverse directions only) and A,B ∈ {1, 2} are tangent space indexes. Both variations

vanish when we substitute in the solution (2.3), (2.4) and only one quarter of maximal

supersymmetries are preserved.

2.1 An ansatz for coincident D7-branes intersecting orthogonally

To obtain an exact form of the metric, we make further assumptions of the form of the

holomorphic function F and τ2: suppose we are having N1 coincident D7-branes at the

origin transverse to directions z intersecting another set of N2 D7-branes also at the origin

transverse to directions w, then we propose that

j(τ) =
1

zN1wN2

, (2.7)

F (z,w) = η2(τ)
(

z−
N1

12 w−
N2

12

)

. (2.8)
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This proposal is a direct generalisation of the solution for parallel D7-branes. The solution

restricts τ in the fundamental region and ensures modular invariance of the metric. The

factor z−
N1

12 w−
N2

12 cancels the divergence in η2(τ) as z and w approach 0.

In this proposal, both F and τ depend only on zN1wN2 and this suggests that we

should define new variables:

y = −(N1 ln z + N2 ln w) , x = (N2 ln z − N1 ln w). (2.9)

In these new variables, equation (2.4) becomes

detKzw̄ =

∣

∣

∣

∣

∣

−N1

z −N2

w
N2

z −N1

w

∣

∣

∣

∣

∣

2

(Kxx̄Kyȳ − Kyx̄Kxȳ) = |F |2τ2. (2.10)

Rearranging gives

(Kxx̄Kyȳ − Kyx̄Kxȳ) =
exp

(

N2−N1

N2

1
+N2

2

(x + x̄)
)

exp
(

− N2+N1

N2

1
+N2

2

(y + ȳ)
)

(N2
1 + N2

2 )2
|F |2τ2, (2.11)

using the fact that

|zw|2 = exp

(

N2 − N1

N2
1 + N2

2

(x + x̄)

)

exp

(

− N2 + N1

N2
1 + N2

2

(y + ȳ)

)

. (2.12)

The simplest solution would be to require that the metric be block diagonal in x and y i.e.

Kxȳ = Kyx̄ = 0 such that the Kahler Potential takes the form

K = f(x, x̄) + g(y, ȳ). (2.13)

The resultant metric is

Kxx̄ = α exp

(

N2 − N1

N2
1 + N2

2

(x + x̄)

)

(2.14)

Kyȳ = β exp

(

− N2 + N1

N2
1 + N2

2

(y + ȳ)

)

|F |2τ2, (2.15)

where α, β are constants satisfying αβ = 1/(N2
1 + N2

2 )2. The choice of α and β has the

effect of altering the way the arguments of z,w are mixed with each other. Consider for

example the case where N1 = N2 = 12 where both Kxx̄ and Kyȳ become flat. The compact

part of the line element in terms of the original coordinate is (i.e. for z = |z| exp(iθ) and

w = |w| exp(iφ))

ds2
θ,φ = αd(θ − φ)2 + βd(θ + φ)2. (2.16)

This represents different ways of fibering an S1 over another S1. The fibration becomes

trivial only when α = β.

Consider however the case when N2 = 0 (i.e. one single stack of parallel branes), our

solution reduces to the solution of single set of parallel 7-branes by transforming back to

the z and w coordinates, and rescaling z = (z̃/(N1
√

β), and similarly w = (w̃/(N1
√

α).

The solution of parallel D7-branes is as expected independent of the choice of α.

– 4 –
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2.1.1 Different choices of coordinates

Our ansatz for solving the Einstein equations requires us to define a new set of coordinates

x, y such that all non-trivial coordinate dependence is in y. This suggests that while the

choice of y is unique up to an arbitrary rescaling, we have far more freedom in choosing x.

A more general choice of x would be

x = A ln z + B ln w, (2.17)

where AN2 − BN1 6= 0 so that the Jacobian is non-singular. This change in the choice

of coordinates is inequivalent to a mere coordinate transformation on the resultant metric

and are genuinely different solutions. We therefore want to know what sort of geometry

is obtained, even though we started off with the same ansatz for τ . Solving the Einstein

equation as before with this different choice of coordinate, gives

Kxx̄ = α exp (
N2 − N1

N2A − N1B
(x + x̄))

Kyȳ = β exp (
B − A

N2A − N1B
(y + ȳ))|η2 exp(

y

12
)|2τ2, (2.18)

where in this case αβ = 1/(AN2−BN1)
2. For N1 = N2 = N we see that the dependence on

A and B drops out from the exponential, though this is not true for N1 6= N2. This again

implies that the solutions for N1 6= N2 are qualitatively different from those when N1 = N2.

Another issue however is that even for N1 = N2, this different choice of coordinate still

has a non-trivial effect on the boundary conditions on the angles. This is most clearly

exhibited in the case where N1 = N2 = 12. In that case both Kxx̄ and Kyȳ become flat

and naively we would get two cylinders. However similar considerations as in eq. (2.16)

in the previous section implies that the compact part of the line element has non-trivial

dependence on A and B i.e.

dsθ,φ ∼ βd(θ + φ)2 + αd(Aθ + Bφ)2. (2.19)

In effect we again have two entangled cylinders.

2.2 More general solutions

2.2.1 Separated branes

We would like to generalise the solutions we have obtained so far to the case where instead

of coincident branes we have branes separated in each stack. The obvious ansatz for τ

would be

j(τ) =
∏

i,j

1

(z − ai)(w − bj)
. (2.20)

However, with this ansatz the coordinate transformation we have been using would produce

a Jacobian that is no longer expressible as a product of f(x)g(y) for some holomorphic

functions f, g and so we could no longer obtain block diagonal metric in x and y. There is

– 5 –
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no obvious way to get around with this problem. On the other hand, it is possible to solve

the Einstein equations when only one stack of branes separates. In that case

j(τ) =

N2
∏

i

1

zN1(w − bi)
(2.21)

and the choice

y = −[N1 ln z + N2 ln w]

x = B ln w. (2.22)

gives

Kxx̄ = α exp(
x + x̄

B
)

N2
∏

i

| exp (
x

B
− bi)|−

2

N1

Kyȳ = β exp(−y + ȳ

N1
)|η2 exp(

y

12
)|2τ2, (2.23)

where αβ = 1/(N1B)2 here. At distances much greater than the separation of the branes,

the solution reduces to that of coincident branes, as should be expected.

2.2.2 Branes intersecting at angles

To describe N branes intersecting at angles, the ansatz for τ would be

j(τ) =

N
∏

i

1

z − aiw
. (2.24)

The relevant choice of (x, y) coordinates is now

y = −[N ln w +
∑

i

(ln(
z

w
− ai))]

x = B ln
z

w
. (2.25)

Fortunately the Jacobian of this coordinate change is |BN/zw|2 and we can easily repeat

the same procedure for solving the Einstein equations to get

Kxx̄ = α exp(
x + x̄

B
)

N
∏

i

| exp (
x

B
− bi)|−

4

N

Kyȳ = β exp(−2
y + ȳ

N
)|η2 exp(

y

12
)|2τ2, (2.26)

and αβ = 1/(BN)2 here. The solution is locally identical to the above solution for sepa-

rated branes in one of the two stacks with N1/2 = N , except they satisfy different boundary

conditions, meaning that the compact direction corresponding to the angles are entangled

in a different manner in the two solutions.
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2.2.3 Solutions not block-diagonal in x, y

So far we have only solved the Einstein equations assuming that the metric is block diagonal

in x, y so that we can easily construct the corresponding Kahler potential. However, there

is actually another class of solutions whose Kahler potentials also take a simple form.

Consider a Kahler potential of the form

K = g(y, ȳ) + h(x, x̄)k(y, ȳ). (2.27)

The determinant of the resultant metric is

(g,yȳ + hk,yȳ)h,xx̄k − |h,xk,ȳ|2. (2.28)

If we could arrange K such that hkk,yȳh,xx̄ − |h,xk,ȳ|2 = 0 then the determinant would

become g,yȳh,xx̄k which is again a simple product of a function in y and x respectively and

should solve the Einstein equations. There are two simple distinct cases where this could

be achieved. We could have

h(x, x̄)k(y, ȳ) = |m(x)n(y)|2, (2.29)

for any holomorphic function m,n.

A second choice would be to put

h(x, x̄) = [m(x) ± m(x̄)]A,

k(y, ȳ) = [n(y) ± n(ȳ)]B , (2.30)

such that A + B = 1.

To prevent extra factors of x appearing in the determinant of the metric other than

the terms already appearing in the Einstein equation (2.11), h has to be quadratic in x in

the case N1 = N2. For N1 6= N2 the component Kxx̄ has an exponential factor and that

seems to dictate that we should choose the first set of solutions ( 2.29). As we shall see

later this new set of solutions is perhaps necessary in helping us to obtain a metric of the

conifold close to the intersection region of two orthogonal D7-branes.

3. A few observations about the solution

We would now like to explore further some of the implications of our solution. We will

concentrate on the case where N1 = N2 with the standard choice of x = ln z − ln w and

y = −(ln z + ln w), which was the basic choice made in section (2.1).

3.1 Angle deficit

Superficially the solution in section (2.1) looks like a single D7-brane in the (x, y) coordinate

system. However, the transformation (2.9) implies that the x, y coordinates have non

trivial boundary conditions and do not span the complex planes, since z,w do. Using the

definition (2.9) and considering the simple case where N1 = N2 = N , we find

y2 = −(θ + φ), x2 = (θ − φ), (3.1)

– 7 –
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where we write

y = y1 + iy2, x = x1 + ix2

and

z = |z|eiθ , w = |w|eiφ, (3.2)

and for simplicity we have scaled away the factor of N .

Since θ and φ are periodic with period 2π, the fundamental domain in the (x2, y2) plane

can be chosen to be a parallelogram with base 4π and height 2π. Since the periodicities of

x2 and y2 are linked we have to specify the path we are traversing before we can discuss

the angle deficit. Furthermore, there is no meaning to the number of times the y-plane

wraps around the fundamental region in the calculation of the energy of the system. We

also see that for general values of N1 and N2 the size and shape of the fundamental region

are different from the case where N1 = N2, and this suggests that the solutions for the

former case are qualitatively different from the latter. In order to account for the correct

periodicities we shall use the coordinates θ, φ instead of x2, y2. Although this complicates

the expression for τ , the metric nevertheless simplifies in the near horizon limit (i.e. when

z,w → 0) This will be applied in the calculation of the energy of the system in a later

subsection.

Returning to the discussion of angle deficit, the geometry of an individual D7-brane

is associated with a deficit angle of π/6 asymptotically far from its core. However, as

described in [3] for stringy cosmic string, the solution is smooth close to the core. The

geometry with the intersecting D7-branes is more subtle since each D7-brane affects the

world-volume of the other. We would expect the angle deficit given by our solution of

intersecting D7-branes to reduce to that of parallel D7-branes by taking first the limit to

a region far away from one of the stacks of branes and then moving asymptotically far

away from the second stack of branes. The angle deficit is computed by moving around the

second set of branes in the plane transverse to it (say the z-plane) while keeping w fixed.

In such a case we would be traversing simultaneously the x and y plane. In this limit

Kyȳ = β exp

(

− N2 + N1

N2
1 + N2

2

(y + ȳ)

)

|F |2τ2 ∼ exp

(

(
1

12
− N2 + N1

N2
1 + N2

2

)(y + ȳ)

)

. (3.3)

By a further coordinate transformation given by

α exp

(

N2 − N1

N2
1 + N2

2

(x + x̄)

)

dxdx̄ = α exp (P (x + x̄)) dxdx̄ = α
dσdσ̄

P 2

β exp

(

(
1

12
− N2 + N1

N2
1 + N2

2

)(y + ȳ)

)

dydȳ = β exp (Q(y + ȳ)) dydȳ = β
dηdη̄

Q2
(3.4)

the angle deficits in the η plane is exactly what one would expect for parallel coincident

D7-branes. For N1 = N2 the x plane becomes a cylinder without the need for a further

coordinate transformation. In general the effect of the orthogonal set of branes cannot be

removed by moving away from them.

Now consider a path that is simultaneously far from both stacks of branes and encircles

the intersection region. Such a path keeps x fixed and traverses a circle in the y-plane.

– 8 –
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By considering again the simple case N1 = N2 = N , the path traverses through an angle

of 2π in both the z-plane and the w-plane, resulting in an angle deficit in the η plane

of 2Nπ/6, which is the combined effect of 2N branes. In particular, it should be noted

that when N1 = N2 = 12 both the x and y plane become cylinders and each plane has

an angle deficit of 2π, independent of the path we take. As remarked these cylinders are

non-trivially fibred and only disentangle when α = β.

3.2 Monodromies

The discussion in the previous section carries over to the analysis of monodromies. Consider

a closed path traversing the z plane with w fixed. This translates into the x, y coordinates

as a closed curve about x and y simultaneously. When we are sufficiently close to the

stack of N1 branes transverse to the z-plane then C0 = τ1 ∼ N1

2π θz and we get exactly the

monodromy we would expect around N1 branes.

Conversely if we consider moving in a closed curve in y keeping x fixed we would be

moving in a curve which simultaneously moves around the z and w plane. If we integrate

the RR 0-form field strength about a closed curve in the y plane in the region where |y|
goes to zero, we get

∮

∂y2
C0dy2 ∼

∫ 2π(N1+N2)

0

−1

2π
dy2 = −(N1 + N2), (3.5)

since C0 = τ1 ∼ −1
2π y2 as |y| approaches zero. This suggests a non-trivial combination of

the monodromies when we move around both stacks of branes along a curve corresponding

to constant x. The resultant monodromy is that of a stack of N1+N2 D7-branes transverse

to y.

Note that while C0 depends only on one variable y, there are in fact more than one

homotopically distinct classes of loops. This is because when we try to smoothly deform a

set of loops that circles one set of the branes to loops circling the other set, we inevitably hit

singularities corresponding to the brane core (i.e. at z = 0 and w = 0). This is analogous

to the case with N parallel but non-coincident 7-branes. In that case everything depends

only on one complex coordinate z but there are singularities at N different points in the

complex plane and there are N homotopically inequivalent classes of loops.

3.3 Issues concerning enhanced supersymmetry

For two D7-branes intersecting over six spacetime dimensions, we should expect only a

quarter of supersymmetry to be preserved. Yet the metric in the x plane can always be

made flat suggesting that the amount of supersymmetry is doubled everywhere, contra-

dicting the prediction of string perturbation theory. This is, however, an illusion. This is

related to the non-trivial boundary conditions in the (x, y) coordinate system as discussed

earlier. To make this explicit, consider the Killing spinor equation1

δψa = Daε = (∂a +
1

4
wAB̄

a Γ[AB̄] +
1

4
wĀB

a Γ[ĀB] +
i

4

∂aτ1

τ2
)ε = 0 (3.6)

1We are adopting the notations in [5].
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where wAB̄
a are the spin connections (whose non-trivial components are along the relatively

transverse directions only). A, B̄ ∈ {1, 2} are complex tangent space indexes while a, b̄ are

complex spacetime indexes corresponding to z and w. We need the projections

ΓĀε = 0 , ΓAε∗ = 0. (3.7)

This ansatz thus explicitly preserves only a quarter supersymmetry. Yet, the trivial depen-

dence on the x coordinate implies that its corresponding spin-connection should vanish,

rendering the projections along x unnecessary. As a result supersymmetry is seemingly

enhanced. We will show that the non-trivial boundary conditions inherited from the co-

ordinate transformation ensures that supersymmetry is enhanced only locally, but not

globally.

Using properties of Kahler manifolds,
∑

A

wA
a A = −∂a ln det ēB̄

b̄ (3.8)

where eB
a ēB̄

b̄
= Kab̄, the killing equation reduces to

∂a ln det ēB̄
b̄ =

1

2
∂a ln τ2. (3.9)

whose solution is

detKzw̄ = |F (z,w)|2τ2, (3.10)

which is automatically a solution to the Einstein equation (2.2). After the coordinate

transformation specified in (2.9) this becomes

detKxȳ = |zw|2|F (x, y)|2τ2. (3.11)

The factor of |zw|2 originates from the Jacobian of the transformation. In the presence

of this term, eq (3.11) solves eq (3.9) everywhere except at the origin. This can be made

explicit by substituting eq. (3.11) into (3.9) which gives

∂a ln det ēB̄
b̄ =

1

2
∂a ln τ2 + ∂a ln z̄w̄. (3.12)

This extra term is zero everywhere except at z = 0 or w = 0. This is analogous to a

conical space whose metric ds2 = |zn|2dzdz̄ can be made flat locally by the transformation

zndz = dη. The coordinate transformation is singular at the origin and the spin connection

is proportional to ∂z ln z̄ as in our solution. As is well known a conical space in general

breaks all supersymmetry. For our solution, it takes us back to a quarter supersymmetric

state. In other words, we should evaluate the spin connection in the z,w coordinates, which

makes it explicit that supersymmetry is enhanced everywhere except at z,w = 0.

3.4 Energy of the system - the ADM mass

For a single cosmic string, the integral

E =
1

2

∫

d2z
√−gR (3.13)
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is related to the energy of the system. In the x, y coordinates the space is asymptotically

flat and we can define the ADM mass as usual. The above relation is obtained by using the

R00 component in the Einstein equation which relates it to the energy momentum tensor.

The result of the integral can be found by changing coordinates from (x1, x2, y1, y2) to

(x1, y1, θ, φ) to avoid the awkward identification of the imaginary parts of x and y. Since

the case where N1 6= N2 is qualitatively different from the case N1 = N2 = N , we consider

here only the latter situation.

E =
1

2

∫ √−gRd2xd2y =
1

2

∫ √−g∂a∂̄b[ln(det gmn̄)]gab̄d2xd2y. (3.14)

Integrating by parts, we have

1

2

∫

d2xd2y∂a(
√−g∂̄b ln Hgab̄) − ∂̄b ln H∂a(

√−ggab̄), (3.15)

where H = det gmn̄ = τ2|η2(τ)e( N

12
(y+ȳ)−1)|2.

The second term vanishes. Since for a tensor of weight one the covariant derivative

acts by

∇aT̃
ab̄ = ∂aT̃

ab̄ + Γa
amT̃mb̄ + Γb̄

amT̃ am − Γm
maT̃

ab̄ (3.16)

and Γb̄
am is zero for a Kahler metric. Using this relation we can write eq. (3.15) as

E =
1

4

∫

∂x[(
√−ggxx̄)∂̄x ln H] + ∂̄x[(

√−ggxx̄)∂x ln H] +

+∂y[(
√−ggyȳ)∂̄y ln H] + ∂̄y[(

√−ggab̄)∂y ln H]. (3.17)

Then we express the integrand in terms of the real parts of x and y i.e. x1 and y1. For

the imaginary parts we revert to the original angular variables of z and w. i.e.

x2 = θ − φ, (3.18)

y2 = −(θ + φ). (3.19)

The integral is thus over <2×T 2. Concentrate on the first 2 terms of the integrand involving

derivatives with respect to x1 and y1, the integrand is

1

8

∫

dθzdφwdy1dx1{∂x1
[(
√−ggxx̄)∂x1

ln H] + ∂y1
[(
√−ggyȳ)∂y1

ln H]}. (3.20)

The first term is zero since H is independent of x and we are left with the second term.

Being a total derivative it reduces to

∫

dx1dθzdφw[
√−ggyȳ∂y1

ln H]Λ−Λ, (3.21)

where Λ → ∞. In this limit where y1 → ∞,

(
√−ggyȳ)∂y1

ln H → 2α(
N

12
− 1). (3.22)

– 11 –



J
H
E
P
0
3
(
2
0
0
7
)
0
7
1

In the other limit where y1 → −∞,

(
√−ggyȳ)∂y1

ln H → α∂y1
(−2y1 + ln

y1

2π
) → −2α. (3.23)

As a result (3.21) becomes
∫

dx1(4π
2)α(

N

6
− 2 + 2). (3.24)

This diverges linearly in x1 as expected due to the extra dimension growing out of the

intersection region. The extra factor of 4π2 originates from the two SO(2) symmetries. We

should rescale x1 by
√

α so that it is identified with the extra isometry direction. A factor

of
√

α is left in the integral. Thus α parametrises a family of different one-quarter BPS

geometries. The fact that the energy of a BPS solution depends on one or more parameters

(moduli) is familiar, for example, for the monopole in Yang-Mills-Higgs theory.

3.5 Some final remarks

As we shall see in the next section, j(τ) can be equated to more general polynomials in z

and w.

j(τ) =
P (z,w)

Q(z,w)
(3.25)

As long as the polynomials are functions of zN1wN2 or one of the above generalised forms,

we can solve them in exactly the same manner, except that the form of F should be

modified accordingly to

F = η(τ)2Q(z,w)−
1

12 . (3.26)

As mentioned earlier the solution has not been generalised to the case where both

stacks of branes are separated. This is because if we alter our ansatz to accommodate this

situation by eq. (2.20) there are no obvious new variables that would allow separation of

variables in the equations of motion.

Solutions of intersecting D7 and (p, q) 7-branes have been obtained in [6], in which the

complex modulus τ is arranged to have dependence only on one of the complex coordinates,

z. Using the relation of compactified F-theory with type IIB on orientifolds [7, 8], the

solution describes two orthogonal stacks of D7-branes and orientifold planes. One stack

consisting of sixteen D7-branes coinciding with four orientifold planes is transverse to the

w-plane. The other stack consisting of another sixteen D7-branes and orientifold planes

separated,is transverse to the z-plane. The form of these solutions is very similar to those

explored here except they are block diagonal in z,w. Yet our solutions have completely

different interpretations. We have different monodromies that signify intersecting D7-

branes separated from any orientifold planes — while not apparent in the x, y coordinates

this could be read off from the z,w coordinates. The fact that we could distinguish these

solutions is encoded in the different boundary conditions i.e. the compact directions in x, y

satisfy different periodicities.
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4. Intersecting D7-branes and conifolds

4.1 Conifolds and intersecting branes

It was first observed in [4] that a set of intersecting NS5 branes over 3+1 dimensions in type

IIB is the T-dual of type IIA compactified on a Calabi-Yau space. When the branes are

arranged to intersect orthogonally and with no extra fields switched on, the T-dual (along

one of the totally transverse directions) geometry is a conifold at the intersection. The

singularities that occur in the dual geometry provide information of the gauge symmetry

the intersecting branes possess. There is an ADE classification of singularities that could be

described by algebraic varieties (see for example [9]) which can be matched with the Dynkin

diagrams of groups. Therefore we can read off the kind of enhanced gauge symmetry in the

intersecting brane theory from the geometric singularities that are present. The physical

interpretation of the symmetry enhancement is that the presence of a singularity implies

the collapse of some cycles upon which branes could wrap. As a result the branes become

massless and we obtain extra massless states supplying the extra vector multiplets required

for the symmetry.

The intersecting D7-branes are intimately related to intersecting NS5 branes. Recall

that the D7-brane solution is an adaptation of the stringy cosmic string solution. Now

suppose we go back to the original context where the stringy cosmic string solution was

considered, i.e. type IIB compactified on a T 2 × M for some four dimensional compact

manifold M to four dimensions. Starting with the cosmic string solution with only a non-

trivial complex modulus τ but trivial Kahler modulus ρ = B + i
√

GT 2 , where B is the NS

2-form and GT 2 is the determinant of the metric on the torus, we can perform a T-duality

along one of the cycles on the torus. This would exchange ρ and τ and the monodromies in

τ would be transferred to ρ. As a result instead of an axion magnetic charge we obtained

magnetic charge of the NS 2-form potential B. The magnetic charge is nothing other than

the NS 5 brane in type IIA (or we could equally well have started with cosmic strings in

type IIA). In the case of N parallel cosmic strings the T-dual 5 brane picture corresponds

to N parallel 5 branes transverse to the complex z plane and the torus T 2. The manner in

which T- duality relates geometry of type IIB (or IIA) with the NS5-brane configuration in

type IIA (or IIB) was studied in [4]. The creation of singularities by varying the complex

parameters of the geometry that leads to symmetry enhancement can now be understood

from the T-dual point of view as NS5 branes coinciding.

It was then shown in [4] that type IIB(A) on T 2×T 2 gives an analogous stringy cosmic

string solution except that now there are two tori moduli τ and τ ′ fibred on the complex

z plane and each can be described by a separate Weierstrass equation. If the two tori

become singular at the same point in the z plane (say z = 0), close to the singularity these

equations are reduced to the form

ζ1ζ2 = z

η1η2 = z, (4.1)

where ζi, ηj are all complex coordinates that parametrise the two tori respectively. Com-
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bining the two equations we obtain

ζ1ζ2 − η1η2 = 0 (4.2)

which is the conifold equation. The corresponding NS5 brane configuration is obtained

by T-duality along a cycle of each torus as before, but this time results in intersecting

NS5 branes over 3+1 dimensions. Each 5 brane is transverse to one of the tori. That

intersecting singularities should lead to conifolds is quite a general phenomenon. In this

particular case it is the collision of two A0 nodes that produces the conifold.2

Since intersecting D7-branes are basically the cosmic strings considered above the

resultant geometry should carry intersecting singularities. Therefore it is very likely that

we should be able to see a conifold from the F-theory picture, where there are enough

dimensions to visualise the singularity.

4.2 Intersecting D7-branes and F-theory

The conifold is a Calabi-Yau three-fold. In order to see the conifold that is allegedly lying

at the intersection of two D7-branes, we need two extra dimensions in addition to the

four relatively transverse dimensions. Therefore a discussion of the conifold only makes

sense when we can establish the precise relation between the ten-dimensional type IIB with

F-theory compactified on a Calabi-Yau. The compactification of F-theory on elliptically

Calabi-Yau three-folds was considered in [10]. There are many different classes of such

Calabi-Yau three-folds. In the simplest case the base space is the minimal ruled surface

Fn i.e. all possibilities where a 2-sphere is fibred on another 2-sphere. The total space can

again be described by a Weierstrass equation as in (A.12) except that now f and g are

functions of two complex variables z,w. In analogy to the case with parallel 7 branes f is

a polynomial of degree 8 w.r.t to z and w separately, and similarly for g, which is now a

degree 12 polynomial in z and w. In general they can be written as

α2 = β3 + f(z,w)β + g(z,w)

f(z,w) =

8
∑

i,j

aijz
iwj

g(z,w) =

12
∑

i,j

bijz
iwj (4.3)

This suggests that the type IIB interpretation should contain 24 7-branes intersecting

another set of 24 7-branes orthogonally over 5+1 dimensions, which should give a compact

space of S2 fibred over S2. A related observation is that in the supergravity solution we

presented for N1 = N2 = 12, the space becomes a product of two cylinders. Therefore, as

in [3], when there are 24 branes on each stack we would glue the cylinders together to get

two S2, consistent with the F-theory picture. The zero locus of the discriminant of the

Weierstrass should give the position of the branes. In general the branes wrap around curves

2It should be noted however that despite several attempts (e.g. [11, 12]), so far the conifold metric has

not been satisfyingly obtained from intersecting 5-brane supergravity solutions.
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in the z and w plane. The total number of complex moduli modulo SL(2, Z)×SL(2, Z) and

rescaling of f and g, is 9 × 9 + 13 × 13 − 3 − 3 − 1 = 243. This corresponds to families of

(3,243) Calabi-Yau manifolds. In general, such F-theories should correspond to orientifold

type IIB theories [13]. We shall briefly review the arguments. To see the orientifold planes

and D7-branes, we first scale into a particular region where f and g can be treated as

polynomials of degree (2,2) and (3,3), respectively, and where they take special forms

f(z,w) = Cη(z,w) − 2h(z,w),

g(z,w) = h(z,w)(Cη(z,w) − 2h(z,w)) (4.4)

for some polynomials η and h, and C is a constant that is tuned to be small such that from

j(τ) =
4(24)3(Cη − 3h2)3

C2η2(4Cη − 9h2)
(4.5)

we can arrange τ ∼ i∞ (i.e. the weak coupling limit in which type IIB description makes

sense). Then the positions of D7-branes correspond to zeroes of the determinant ∆ =

C2η2(4Cη − 9h2), which gives some colliding A1 singularities (depending on the precise

form of η. e.g. for η = z2w2 we would have two colliding A1 singularities). Further,

examining the monodromies of τ around η gives an SL(2, Z) transformation of

T 2 =

(

1 1

0 1

)2

, (4.6)

and so is consistent with the interpretation as a pair of coincident (and perhaps curved in

z,w planes) D7-branes. The other zeroes of ∆ occur at

h(z,w) = ±2

3

√

Cη(z,w). (4.7)

Again in the limit of small C the zero locus is approximately h = 0 and we can look into

the monodromies of τ when we move about h = 0. This would give the composition of

the monodromies from each of the two curves obtained in (4.7) and using (4.5) gives an

SL(2, Z) transformation, ±T−4. Therefore it is consistent to interpret these curves (4.7) as

two coincident orientifold planes in weakly coupled type IIB. While we started off with some

products of SU(2) gauge symmetries (or A1 singularities) we can break these symmetries to

obtain more general brane configurations. This can be done by allowing g to be deformed

to

g = h(Cη − 2h2) + C2χ, (4.8)

for some arbitrary polynomial χ subjected to the same restriction as g. Again taking

C → 0 and h, η, χ fixed we go to the weak coupling limit, and we find that the discriminant

becomes

∆ = −9C2h2(η2 + 12hχ). (4.9)

It is clear that the original coincident D7-branes given by η = 0 are now separated. In this

manner the breaking of the SU(2) symmetry by deforming g to obtain the most arbitrary
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configurations is equivalent, from the type IIB picture, to the Higgs mechanism where

branes move apart. In order to reconstruct the complete f and g that describe all the

branes we would need to patch different regions which locally admit such a description.

One example is the correspondence between F-theory on F0 (where the base space is simply

the direct product of two 2-sphere) and the T-dual of the Gimon-Polchinski model [8,

14, 15]. In this correspondence it was observed that the number of constraints needed

to obtain an (SU(2))8 × (SU(2))8 gauge symmetry exceeds the total number of complex

moduli. Fortunately there are still families of solutions that could satisfy all the constraints

but these are constrained to lie in a particular slice of the moduli space. As a result

the total number of massless hypermultiplets is less than 243. But the number of extra

neutral hypermultiplets that appear as SU(2) is broken matches the F-theory prediction

as the constraints on f and g are lifted. Returning to the question of the search for the

conifold, that arises from the orthogonal intersection of two D7-branes, we could analyse

the geometry by scaling close to the intersection region while arranging the orientifold

planes to be sufficiently far so that they do not interfere with the local geometry. This will

be carried out in the next section.

4.3 Conifold in F-theory

Having now reviewed the relation between F-theory compactified on an elliptically fibred

Calabi-Yau three-fold with type IIB orientifold theory, the various parameters of the Weier-

strass equation can now be varied to build a conifold in F-theory which can be interpreted

as orthogonally intersecting D7-branes in type IIB. For this to happen two A0 nodes corre-

sponding to U(1) ×U(1) gauge symmetry must collide. From (A.12) it is straight forward

to find the specific forms of f and g needed to construct these colliding A0 singularities,

f = a00 + a11zw + O(z2, w2)

g = b00 + b11zw + O(z2, w2). (4.10)

The discriminant is then

∆ = 4f3 + 27g2 = (4a3
00 + 27b2

00) + zw[A + O((zw)2)], (4.11)

where A is just some combination of a11 and b11. In order to describe colliding A0 singu-

larities at z = w = 0 we need to set

(4a3
00 + 27b2

00) = 0, (4.12)

and

α = 0

β =

√

−a + zw + O(z2w2)

3
. (4.13)

These are the points where (A.12) is satisfied and all its partial derivatives vanish. They

are the singular points. Expanding (A.12) about these singular points up to second order,

we get

δ2
β − δ2

α + b00zw = 0, (4.14)
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which is the conifold equation. To summarise, the conifold equation is built from two

requirements that are necessary if it is to represent intersecting D7-branes. First, the

zero locus of ∆, which is interpreted as the position of the D7’s, should represent two

orthogonally intersecting A0 nodes. Second, the monodromies about these 7-branes should

correspond to those of D7-branes.

The next obvious question to ask is then whether we could obtain the conifold metric

from our metric for intersecting D7-branes by applying the standard procedure described

in [3], which extends the lower dimensional metric to a higher dimensional one including

the torus. This presents difficulties, as we will now see.

4.4 Obstruction to obtaining the conifold metric from intersecting 7 branes

solution

We would like to extend our solution of the ten dimensional Einstein equations to twelve

dimensions in order to visualise the conifold.3 It was argued in [3] that if the total space

E, which is the elliptically fibred Calabi-Yau n-fold F-theory is compactified on, admits

a nowhere vanishing holomorphic (n, 0) form W and that we can put a Kahler metric on

E whose corresponding volume form approaches W ∧ W̄ asymptotically, then E admits a

Ricci-flat Kahler metric for non-compact E [3]. Since we are scaling into the conifold it is

reasonable to consider E to be non-compact. Following these lines the corresponding (3, 0)

form W in our solution would be

W = ∆− 1

12 η2(τ)dζdxdy, (4.15)

where ζ is a complex coordinate on the torus with periodicity

ζ ∼ ζ + 1 ∼ ζ + τ, (4.16)

and ∆ ∼ (zw[A + O((zw)2) is as defined in eq. (4.11).

The Kahler potential for this extra torus which has all the required properties, includ-

ing invariance under SL(2, Z) transformation, is then given by

ΦT 2 = −(ζ − ζ̄)2

2τ2
. (4.17)

This part of the potential gives the metric on the F-theory torus,

ds2
T 2 =

1

τ2
|dζ − ζ − ζ̄

2iτ2
∂yτdy|2. (4.18)

This metric is automatically Kahler flat since the 12-dimensional Ricci scalar would be

R = Gab̄∂a∂b̄(ln g10 − ln τ2) = 0 (4.19)

3Certainly we should be very cautious with this search for metrics because the compact torus in F-theory

is actually 1+1 dimensions and yet we are treating them as purely Euclidean.
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where g10 is the determinant of the 10-dimensional Kahler metric and we immediately

identify what appears in the bracket as the 10-dimensional Einstein equation. Now take

the limit zw → 0 or y1 → ∞, then

τ ∼ y

2πi

Kyȳ ∼ exp (−2y1)
y1

8π
(4.20)

The total Kahler potential in this limit is (keeping only leading order terms)

K ∼ 2ζ2
2

y1
+ |x|2 − e−2y1y1

8π
. (4.21)

Note that the third term is exponentially suppressed compared to the first two terms. We

wish to compare this Kahler potential with that of the conifold. The Kahler potential of a

conifold is [16]

Φconifold =
3

2
r

4

3 (4.22)

where

a2 + b2 + c2 + d2 = 0

|a|2 + |b|2 + |c|2 + |d|2 = r2. (4.23)

In order to compare the two Kahler potentials it would be more convenient to change

coordinates to ζ, x, y. The torus coordinate ζ is related to the coordinates in the Weierstrass

equation (up to scaling) (4.3) by

ζ =

∫ x

β0

dβ

α
, (4.24)

along some path C in the complex β plane. Since we are now restricting to a region very

close to the conical singularity δ2
α = δ2

β = zw = 0 we can ignore δ3
β and so we obtain

ζ = ln(δα + δβ) − 1

2
ln zw. (4.25)

Substituting into eq. (4.3) we have

δα =
√

zw cosh ζ,

δβ =
√

zw sinh ζ,

r2 = |zw| cos 2ζ2 +
|z|2 + |w|2

2
= e−y1 [cosh x1 + cos 2ζ2]. (4.26)

Now the Kahler potential as a function of r can be expressed in our coordinates and the

resulting metric can be shown to be Ricci flat, which is very much in the same spirit as [17].

We first solve the conifold equation to obtain the local coordinates on the conifold and then

impose an SO(n) symmetry by obtaining the expression of r such that the Kahler potential

is solely a function of r. Finally we can compute the Ricci scalar and set it to zero. The

Kahler potential is then obtained from this differential equation. Comparing (4.26) with
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the D7-brane Kahler potential (4.21) we are impressed that both depend on the same

coordinates y1, ζ2, x1 but (4.21) depends also on x2. Considering the discussion in section

2.2.3 a possible modification to our Kahler potential could be

Kmodified =
2ζ2

2

y1
+

x2
1

y1
− e−2y1y1

8π
. (4.27)

Ignoring also the third term since it is exponentially suppressed, we have

Kmodified ∼ 2ζ2
2

y1
+

x2
1

y1
, (4.28)

which now has a more similar structure to (4.26) and indeed is always positive and ap-

proaches zero as zw → 0, and can therefore be identified with some radius of the conifold.

However, it is intrinsically different from the conifold Kahler potential by its dependence

on y1, which cannot be remedied by a different choice of metric, in the base space. This is

rooted in the form of the metric, which is block diagonal in the torus metric and the base

space, breaking explicitly the required SO(4) symmetry of the conifold. This can be seen

by a coordinate transformation

ζ = t1 + τt2 (4.29)

where ti ∼ ti + Z and ti ∈ R. The torus metric (4.18) then becomes

ds2
T 2 =

1

τ2
|dt1 + τdt2|2, (4.30)

which is the standard torus metric with complex modulus τ and unit metric determinant,

consistent with the fact that the torus is unphysical since its Kahler modulus is not part

of the physical spectrum and cannot be varied. The same problem also plagues the metric

of K3 with A1 singularity in the parallel stringy cosmic string solution. In that case the

SO(3) symmetry expected of a the conical singularity is again broken by the choice of the

block diagonal ansatz.

This is similar to the observation in [18] where it is found that the T-dual to the

stringy cosmic string solution does not give the exact NS5 brane metric because of the

block diagonal ansatz of the metric in the torus and the transverse complex plane z. It

was argued there that the correct solution should emerge if we go beyond the adiabatic

approximation used in [3]. However, given that the extra dimensions are not physical and

no momentum can propagate along those directions, it is questionable as to whether it is

sensible to obtain a metric which preserves an SO(4) symmetry mixing these directions

with those along the base space. Another observation is that in [19] the leading order

metric of the moduli space of type IIA on a Calabi Yau three-fold near the conifold point is

given by the stringy cosmic string solution. On the other hand we have seen here how the

stringy cosmic string possibly describes a conifold directly, albeit with the need for some

modifications. This seems to suggest some curious connection between a geometry and its

moduli space.

Finally we would like to make a remark about deformed and resolved conifolds. From

the derivation of (4.3) the deformed conifold equation

a2 + b2 + c2 + d2 = ε (4.31)
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for small ε can simply be obtained by replacing zw by zw − ε everywhere. This would

correspond to curved 7-branes, very much analogous to the NS5 brane configurations dual

to a deformed conifold. However, learning from the NS5 story, we know that the deformed

conifold is related to a resolved conifold by mirror symmetry via three T-dualities along

three isometry directions [20], or by a conifold transition. So do our curved D7-branes

producing the deformed conifold T-dualise to a resolved conifold? Also is there some D7-

brane configuration which naturally produces a resolved conifold? The answer is probably

no to both questions. This is because, as is well known, a resolved conifold is obtained

from the conifold by varying the Kahler moduli, which are not physical modes in F-theory.

The Kahler modulus of the torus is a priori fixed. From another perspective, in order to

go over to the mirror manifold we have to perform three T-dualities and this must involve

T-duality along one of the cycles of the fibred torus. Since no physical modes can propagate

in the torus, it is not know whether T-duality along these directions makes any sense.

5. Discussion and conclusion

In this paper we have obtained several supergravity solutions that describe intersecting

D7-branes. The solutions turn out to be very similar to parallel D7-brane solutions and

the major difference lies in the non-trivial boundary conditions. This suggests that an

enhancement of supersymmetry away from the singular point of the geometry where the

branes reside is a quite generic phenomenon and it seems that the symmetry enhancement

observed in intersecting D5-branes in [2] also occurs for intersecting D7’s.

However, there is an important difference between intersecting D5’s in [2] and D7 since

the connection between the microscopic string description and supergravity is unclear for a

system of D7-branes. It is impossible to take the large-N limit since each D7-brane induces

a deficit angle of π/6 independent of the string coupling. It is therefore impossible to ignore

the back-reaction of the branes on space-time. This is seen in the string description from

the fact that closed string exchange cannot be ignored. At the very least, it is necessary

to include the coupling of the RR-scalar, τ1, to the bulk Riemann tensor [1]. As a result a

probe brane analysis using the DBI action could be quite subtle [21].

On the other hand, the geometry generated by intersecting D7-branes is of interest

in its own right. For example the world-volume theory of a D3 brane embedded in the

intersection domain of two stacks of D7-branes is N = 1 QCD with flavors [22]. The

supergravity solution of intersecting D7-branes discussed in this work should be a good

starting point for exploring the gravity dual of N = 1 QCD.

By exploring further the relations of 7-branes in type IIB with F-theory, it looks very

likely that a conifold should emerge at the intersection of two orthogonal D7-branes from

the 12-dimensional F-theory picture. However, we haven’t been able to obtain the explicit

conifold metric by extending our solution to twelve dimensions applying the procedure

described in [3]. This is due to the breaking of the SO(4) symmetry of the conifold by the

block diagonal ansatz of the metric which distinguishes the fibred torus from the base space.

This breaking of symmetry is possibly intrinsic to F-theory since the extra dimensions are

unphysical and it is hard to imagine how they could have mixed with the other physical
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directions.4 The deformed conifold can be obtained by turning the D7 branes into curved

ones, very much analogous to the NS5 brane story. However, it is unlikely that there is a

resolved conifold counterpart in the D7 picture. This is once again due to the unphysical

nature of the extra dimensions, whose only remnant after BRST projection is the complex

modulus τ . The Kahler modulus is non-existent and it would not be possible to resolve the

singularity by modifying the Kahler modulus. From the brane perspective, again comparing

with the NS5 branes, D7-branes separated along the totally transverse directions would

probably produce a resolved conifold. Yet these totally transverse directions are exactly

those non-physical torus directions. The D7’s are thus stuck together rendering a resolved

conifold improbable.

Finally there are several clear aspects of these kinds of intersections that have not been

explored. We would like to understand more about the proposed solution in the case where

N1 6= N2 and the other families of solutions giving non-block-diagonal solutions.

We should understand how angle deficits can be evaluated in these situations and the

way to generalise to non-coincident branes in both stacks or possibly other curved brane

configurations. It would be interesting to see how the symmetry enhancement seen in the

supergravity solution can be described in microscopic terms by string theory. It would

also be interesting to understand if the conifold plays any role in these intersecting D7’s

and if there exists more general null projection in F-theory that could reproduce the 10

dimensional IIB metric from a twelve-dimensional starting point.
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A. An overview of stringy cosmic strings, D7-branes and their relation to

F-theory

A.1 Stringy cosmic string and D7-branes

The supergravity solution of a cosmic string in four dimensions which induces non-trivial

SL(2, Z) monodromies on the complex modulus τ was considered in [3]. The complex

modulus τ originates from a torus on which a higher dimensional theory compactifies,

therefore the theory should be invariant under SL(2, Z) transformation, where

τ → aτ + b

cτ + d
(A.1)

and ad− bc = 1, a, b, c, d are integers. In type IIB string theory it is believed that SL(2, Z)

is an exact symmetry even in the quantum theory. The complexified string coupling com-

bining the RR zero form and the string coupling, also usually known as τ = C0 + ie−φ

4In fact the search for such a metric might not make sense in the first place because these extra dimensions

are not even Euclidean.
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transforms as in (A.1) and the form of the IIB effective action looks exactly like the com-

pactified supergravity theory mentioned above [3]. This suggests that the solution can be

adopted for describing other extended objects of codimension 2, which are D7-branes in

ten dimensions [23].

The bosonic part of type IIB supergravity is given by

∫ √
g(R +

∂µτ∂ν τ̄

2τ2
2

gµν) (A.2)

where only the dilaton and RR zero form are switched on.

The equations of motion obtained are:

i) The τ equation:

∂µ(
√−ggµν∂ντ) = 2

√−ggµν ∂µτ∂ντ

τ − τ̄
. (A.3)

ii) Einstein equation:

Rµν =
1

4τ2
2

(∂µτ∂ν τ̄ + ∂ντ∂µτ̄). (A.4)

Note also that there is a composite U(1) connection

Qµ = i
∂µτ1

τ2
(A.5)

that enters into covariant derivatives along with the spin connection. Suppose the D7-

branes are aligned to be transverse to x8 and x9. It will be more convenient to combine

these two transverse dimensions into a complex coordinate z = x8 + ix9 since the resultant

geometry is Kahler. All fields depend only on z. Substituting the metric ansatz

ds2 = ηµνdxµdxν + Ω2(z)dzdz̄. (A.6)

into (A.4) gives

2∂∂̄ ln Ω = ∂∂̄ ln τ2. (A.7)

It turns out that any holomorphic τ satisfies the equations and a convenient solution for

the metric is Ω = τ2. However this is not SL(2, Z) invariant and an acceptable solution is

j(τ) =
1

z
(A.8)

Ω2 = τ2|η2(τ)z−1/12|2, (A.9)

where j(τ) maps the fundamental region in the τ plane to a complex plane exactly once.

In fact

j(τ) =
θ2(τ)8 + θ3(τ)8 + θ4(τ)8

η24
. (A.10)

The dedekind eta function is a modular function that compensates for the transformation

in τ2. The factor of z−1/12 removes the singularity in the eta function as z approaches zero.

It follows from (A.8) that τ → ∞ as z → 0 and that τ → τ + 1 as z → ze2πi, signifying
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the presence of a D7-brane at z = 0. As z → ∞, τ approaches a constant value and the

metric becomes

Ω2 = |z−1/12dz|2, (A.11)

which implies an angle deficit of π/6. The solution generalises to describe more branes,

by equating j(τ) to more general holomorphic functions in z. Since each brane produces

an angle deficit of π/6, 24 parallel branes have angle deficit of 4π, in which case the

transverse space is compactified to a sphere. In general the presence of angle deficits

breaks all supersymmetries, as can be seen from the killing spinor equation, but the D7-

brane solution is supersymmetric. This property follows from a cancellation of the effect

of the spin connection by the U(1) connection.

A.2 Relation to F-theory

As discussed above, in the presence of 24 branes the transverse space is compactified to

a two sphere. In the stringy cosmic string context there is a torus whose modulus is τ

fibred over this sphere, where the total space is a K3 surface. However in the description

of 7-branes τ is the complexified string coupling and there are not any torus related to τ .

The analogy is so strong that it was suggested in [24] that type IIB with 24 7-branes is

equivalent to twelve dimensional F-theory compactified on an elliptically fibred K3 [24].

The modulus of the fibre, the torus, is τ . The two extra dimensions, however, are not

dynamical and by a suitable projection operator no physical states propagate along these

extra dimensions and the only remnant is τ .5 An elliptically fibred K3 can be conveniently

described by a Weierstrass equation whose coefficients are functions of the base space, i.e.

y2 = x3 + f(z)x + g(z). (A.12)

The zero locus of the discriminant of the equation

∆ = 4f3 + 27g2 (A.13)

gives the position of the 7 branes and the modulus of the torus is related to f and g by

j(τ) =
(24f)3

∆
. (A.14)

For equation (A.13) to describe 24 branes it should have in general twenty-four distinct

solutions. If f is a polynomial in z of degree 8 and g of degree 12, modding out by SL(2, C)

symmetry on the z plane and the freedom to rescale f and g, the number of independent

complex parameters is 18. This tells us that there cannot be more than eighteen 7-branes of

the same type. This is inevitable since the theory on a compact manifold would have been

inconsistent had fluxes not cancelled. It was shown in [7] that type IIB on an orientifold

T 2/Z2 with four orientifold 7-planes, each coinciding with four D7-branes, is F-theory on K3

at a particular point of the complex moduli space where the modulus τ is a constant. The

5There is another complication about the signature of these extra dimensions being (1,1). But as

explained in [24] we can treat it as a Euclidean space.
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charges of the D7-branes and the O7-planes cancel exactly everywhere and the number of

massless gauge neutral fields is exactly 18. They correspond to the modulus τ , 16 massless

fields that give the D7-brane position and 4 − 3 = 1 orientifold positions modulo SL(2, C)

on the z plane. Analogous considerations for intersecting branes are discussed in the main

text.
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